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CALCULATION OF THERMAL STRESSES ARISING IN ELECTRICALLY CONDUCTING 

MATERIALS WITH THE PASSAGE OF A HIGH-CURRENT PULSE 
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and D. M. Skorov 
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A high-current pulse, passing through a rod, whose duration is less than the period of 
the free vibrations of the rod, sets up thermoelastic vibrations in the rod [!, 2]. A calcu- 
lation of the stresses arising in a vibrating rod was made in [2], taking account of the tem- 
perature dependence of the elastic modulus, under the assumption of a homogeneous distribu- 
tion of the current. 

Neglect of the skin effect in a conductor is not always justified. If the radius of the 
rod exceeds the thickness of the skin depth, the inhomogeneity of the distribution of the 
current density must be taken into consideration [3]. An inhomogeneous distribution of the 
current in a conductor with a high-frequency electrical pulse sets up a temperature gradient 
and brings about thermal stresses in the material of the conductor [4]. 

In the present work a calculation is made of the thermal stresses in a sample, subjected 
to heating by a current pulse, taking account of the skin effect; the statement of the elec- 
trodynamic problem coincides with the statement of the problem in [3]. For a description of 
the process of pulsed heating, the equations of electrodynamics are supplemented by the equa- 
tions of thermal conductivity and elasticity [5] 

aT , E aT c~ au z a (x aT\ , 
CvgF - t - 2 t ,  C 3 at az z = azz-- \ "-~xz) v - Q ( x ' t ) ;  (1) 

a2u i aTlm , 

P a-TV--' ---- az-----~-;-Fz,~ /, m----1, 2, 3, (2) 

where T is the temperature; c v is the specific heat capacity; E is the Young modulus; ~ is 
the Poisson coefficient; ~ is the coefficient of volumetric expansion; Q is a function, de- 
scribing the Joule heating of the sample; Tim is the tensor of the internal stresses; u I are 
the components of the vector of the deformation; p is the density; F l is the component of the 
volumetric forces acting on the sample. 

We consider the quasi-steady-state electrodynamic problem with a constant conductivity 
~. The condition of the quasistationary character of the electromagnetic field for conduc- 
tors with a length of ~i m is satisfied for pulses with a duration At~10 -6 sec. Ohm's law 
is applied in its simplest form: 

where Jl is the current density; E l is the intensity of the electrical field. 

In such a statement, the electromagnetic problem is solved separately from the equations 
of thermal conductivity and elasticity. Under the assumption of the presence of axial sym- 
metry of the problem, the current density has one component differing from zero, jz(r, t) = 
j(r, t), for which the equation has the form 
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aj a2j . t #j 
P~176  ' r Or' p o = 4 n ,  t0--TH/ra. (3) 

From the llnearity of Eq. (3) there follows the possibility of using the Fourier method for 
finding the solution. Taking account Of the finite nature of the current density at the axis 
of the conductor, we can obtain an expression for the current density in the form 

! I do) ik lo( ikr) i (oJ)e~t ,  j ( r ,  t) = ~  ~ Jl (ikro) (4) 

where k 2 = iuoom; Jv(ikr) is a Bessel function of order v(v = 0.i) of a complex argument; ro 
is the radius of the conductor; I(m) is a Fourier expansio~ of the total current. The total 
current can have the form of damped vibrations or of an aperiodic signal [3]. Integration 
of (4) is carried out by the method of residues. For weakly damped vibrations and an aperi- 
odic discharge, (4) coincides with the results obtained in [3]. In the case of a strong skin 
effect, expression (4) goes over into a well-known exponential distribution of the current 
density [6]. 

Article [3] gives a connectlon between the parameters of the discharge circuit and the 
parameters of the electrical signal: 

R V "  B" 1 

R i /  R"- 1 
2L V 4L ~- LC ' 

(5) 

where R is the active resistance of the circuit; L is the inductance; C is the capacitance. 
Varying the parameters of the circuit, the parameters of the signal 8 and y can be varied. 
In this case, there is a change in the position of the poles of the function I(m) in the com- 
plex m plane. It must be noted that relationships (5) hold for low-frequency pulses (weak 
skin effect), where the poles of I(m) are far from the position for null values of J,(ikro). 
In the contrary case the connection between the parameters of the signal and the electrical 
circuit is determined by other relationships. The connection between the parameters of the 
signal and those of the discharge circuit in the most general case can be obtained from the 
energy conservation law written for a cylindrical conductor [6]. 

In the notation ~ = ikro, no = ro(~oo/L/~) ~/~, ~t " ro(~ooR/2L) */2, this relationship 

has the form 

o Jo(Q) (6) 

By virtue of the real nature of the expression for the total current, the roots of Eq. 

(6) have the form of a complex-conjugate pair 

0-~ - ) - - [QnIexp( •  n - - - -O , i , 2 , . . . *  

In the case of an aperiodic signal (~n = ~/2) the roots of E%. (6) satisfy the following 

relationships: 

8n < an < an, where $n and a n are determined by the equations Jo(Sn) " 0, J*(un) - O, 

n = i, 2, 3, ...; 

a n + a n with n § ~. The pulse obtained in a circuit with given parameters represents 
an infinite series, consisting of an exponent. In the indices of the exponent, the factors 
with t contain the roots of Eq. (6). For description of the pulse it is sufficient to limit 
ourselves to the first two terms, since the remaining terms are damped with time far more 
rapidly than the first two and have only a weak effect on the form of the pulse. 

Solution of the problem of the distribution of the current allows of solution of the 
system of equations of thermal conductivity (i) and elasticity (2). 
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The equation of the heat balance (i) contains the function Q = (i/o)j2(r, t), describing 

the Joule heating of the sample. Durations of the current pulses of i0-~-i0 -6 are considered 

The phenomenon of thermal conductivity can be neglected, since the characteristic time t T for 
this process is great in comparison with the duration of the pulse. For molybdenum samples 
of cylindrical form with dimensions of ro = 2 �9 i0 -s m and length I = 4 �9 i0 -~ m, we have t T 
~i0 -2 sec. The thermoelastic stresses considerably exceed the stresses arising with electro 
dynamic compression of the sample [i]. The ratio of the thermodynamic stresses To and the 
electrodynamic stresses r e is on the order of re/To~10 -4. 

The duration of the current pulses is more than an order of magnitude greater than the 
time of the elastic vibrations of the sample. Under these circumstances, the inertial terms 
make only a small contribution to Eq. (2) and the deformations depend on the time through the 
temperature. The vector of the deformation u I in cylindrical geometry, by virtue of the ax- 
ial symmetry, has two nonzero components u r and Uz, and there are no torsional deformations, 
U = 0, 

Taking account of all the approximations, Eqs. (i), (2) are reduced to the system 

8T , E ~T c) [' Ou z ' i _=  ! ]O(r, t); (7 )  
c~; c)t t--2L~ 3 at ~c)x z J 7 

OZu t 1 iJ2um 2 ( t - -  ~0 ~ OF = o  (s) 
~x m ~ ! - -  2~ Oxidx m t - -  21x 3 Ox t 

with the following boundary conditions: 

i) The absence of heat transfer with the external medium, since the losses of heat by 
radiation are small in view of the low temperatures, and the evolution of heat with the given 
durations of the pulses can be neglected; 

2) the absence of normal stresses at the lateral surfaces of the rod Trrlr = ro = 0; 

ro 

3) free ends of the rod S'Cz~rdr= o. 
0 

The initial conditions are a constant temperature To and the absence of deformation at 
the moment t = 0. 

The left-hand part of Eq. (7) contains a term with a vector of the deformation u I. Since 
the dependence of the deformation on the temperature is determined by the equilibrium equa- 
tion (8), the system (7), (8) can be reduced to an equation for the temperature. For the ma- 
terials under consideration (tantalum, tungsten, molybdenum) the relationship [7] uE/c V ~ 1 
is satisfied; therefore, the second term in the right-hand part of Eq. (7) differs from the 
first term by an amount on the order of (u/ro). For the case of negligible elastic deforma- 
tion, we can use the method of successive approximations, expanding the solution in terms of 
the parameter (u/to). 

Equations (8) for an axially symmetrical distribution of the temperature are integrated; 
the components of the vector of the deformation Ur, u z are expressed in quadratures [7]. 
The solution of the system (7), (8) and the relationships between the deformations and the 
stresses [7] make it possible to determine the components of the stress tensor 

, | r 

E ~ 1 T (r ' ,  t) r ' d r ' - -  T (r ' ,  t) r ' d r '  , 
%-r = l -- ,t~ -5 r-"~ o 

7"0 1" 

E a I t  S 1 t ' r ( r ' , t )  r ' d r ' - - T ( r , t ) }  t - ~  5 [~o r(r',t) r 'dr '§  
0 

~ = - -  "-3" I '  (r ' ,  t) r ' d r '  - -  T (r, t , 

T r y - -  T~z ~ Trz = 0 

(9) 

and the distribution of the temperature 
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T(r, t ) =  T(~ t ) +  T(l)(r, t ) +  ... 
t 

I ~]~(r,  t ' )dt ' ;  rco~ (r,  t) = o 
ro ~ ' 

t q (r, t') dt '  q (r', Tot) (r, t) = ~--~o o o o 

�9 To 

2 q (r, t ')  dt" t - -  ~ - -  ~ q (r, t') dr" q (r', t") dt", 
ro b 5 o 

(.JO ~ 

(zo) 

(ll) 

where 

q (r, t) = ~ F" (r, t). 

Using formulas (9)-(ii), we can calculate the space and time distribution of the temperature 
and the associated stressed state of the investigated material. 

The distribution of the temperature in the investigated material for the moment of time 
mot = ~/2, where the parameters R, L of the unit are constant while C varies (Ca = 0.45C,), 
is shown in Fig. i. A calculation was made for molybdenum samples ro = 2 �9 10 -3 m, I = 4 �9 
10 -2 m; the parameters of the hnit: R =.3.4 �9 I0- ~; L = 4.5 �9 10-TH; C = 3 �9 10-3F; the 
voltage in the battery of condensers was ~,5 kV. The mean temperature is determined according 
to 
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ro 

] i' T,:~ Tr rd~': 

then ~, = [E/(I -- ~)](~T,/3). 

From Fig. i it can be seen that with a decrease in the duration of pulse, the tempera- 
ture gradient rises and along with it there is a rise in the thermal stresses which can lead 
to fracture (Fig. 2). The thermal stresses attain their maximal value at the end of the firs 
half of the pulse (wot = ~/2), when the total current in the circuit is maximal. With a de- 
crease of the current in the circuit, the temperature at the axis of the rod increases, the 
temperature gradient decreases, and the internal stresses in the material fall (Fig. 3, l(t) 
is the total current). 

The results of the calculation make it possible I) to determine the maximal temperature 
gradient whiclh the material can sustain; 2) in conjunction with experimental data, to obtain 
the temperature dependence of the heat resistance of the material; 3) to determine the effect 
of the parameters (R, L, C) of the unit on the character of the temperature distribution in 
the sample. 
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